enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Internal ballistics - Wikipedia

    en.wikipedia.org/wiki/Internal_ballistics

    Barrel time - the time from when the projectile starts to move until it exits the barrel. Diagram of internal ballistic phases. The burning firearm propellant produces energy in the form of hot gases that raise the chamber pressure which applies a force on the base of the projectile, causing it to accelerate. The chamber pressure depends on the ...

  3. Ballistic table - Wikipedia

    en.wikipedia.org/wiki/Ballistic_table

    Example of a ballistic table for a given 7.62×51mm NATO load. Bullet drop and wind drift are shown both in mrad and MOA.. A ballistic table or ballistic chart, also known as the data of previous engagements (DOPE) chart, is a reference data chart used in long-range shooting to predict the trajectory of a projectile and compensate for physical effects of gravity and wind drift, in order to ...

  4. Miller twist rule - Wikipedia

    en.wikipedia.org/wiki/Miller_twist_rule

    Miller twist rule is a mathematical formula derived by American physical chemist and historian of science Donald G. Miller (1927-2012) to determine the rate of twist to apply to a given bullet to provide optimum stability using a rifled barrel. [1]

  5. Bolt thrust - Wikipedia

    en.wikipedia.org/wiki/Bolt_thrust

    A complicating matter regarding bolt thrust is that a cartridge case expands and deforms under high pressure and starts to "stick" to the chamber. This "friction-effect" can be accounted for with finite elements calculations on a computer, but it is a lot of specialized work and generally not worth the trouble.

  6. Muzzle energy - Wikipedia

    en.wikipedia.org/wiki/Muzzle_energy

    Muzzle energy is dependent upon the factors previously listed, and velocity is highly variable depending upon the length of the barrel a projectile is fired from. [2] Also the muzzle energy is only an upper limit for how much energy is transmitted to the target, and the effects of a ballistic trauma depend on several other factors as well ...

  7. Transitional ballistics - Wikipedia

    en.wikipedia.org/wiki/Transitional_ballistics

    The external ballistics uses so-called initial velocity Vo, which is not the same as the real muzzle velocity. The initial velocity Vo is calculated via an extrapolation of the decaying part of velocity curve to the position of the muzzle (to). The difference between these two velocities is visible in the chart. [7]

  8. Physics of firearms - Wikipedia

    en.wikipedia.org/wiki/Physics_of_firearms

    The energy conversion efficiency of a firearm strongly depends on its construction, especially on its caliber and barrel length. However, for illustration, here is the energy balance of a typical small firearm for .300 Hawk ammunition: [1] Barrel friction 2%; Projectile motion 32%; Hot gases 34%; Barrel heat 30%; Unburned propellant 1%.

  9. Muzzle blast - Wikipedia

    en.wikipedia.org/wiki/Muzzle_blast

    The overpressure wave from a firearm's muzzle blast are infrasonic and thus inaudible to human ears, but it still can be highly energy-intense due to the gases expanding at an extremely high velocity. Residual pressures at the muzzle can be a significant fraction of the peak bore pressure, especially when short barrels are used.