Search results
Results from the WOW.Com Content Network
Ideal diode with a series voltage source and resistor. The I-V characteristic of the final circuit looks like this: I-V characteristic of an ideal diode with a series voltage source and resistor. The real diode now can be replaced with the combined ideal diode, voltage source and resistor and the circuit then is modelled using just linear elements.
Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3] He calls it "a theoretical rectification formula giving the maximum rectification", with a footnote referencing a paper by Carl Wagner , Physikalische Zeitschrift 32 , pp ...
In some special cases, the constitutive relation simplifies to a function of one variable. This is the case for all linear elements, but also, for example, an ideal diode, which in circuit theory terms is a non-linear resistor, has a constitutive relation of the form = (). Both independent voltage and independent current sources can be ...
The circuit is treated as a completely linear network of ideal diodes. Every time a diode switches from on to off or vice versa, the configuration of the linear network changes. Adding more detail to the approximation of equations increases the accuracy of the simulation, but also increases its running time.
The Shockley ideal diode equation characterizes the current across a p–n junction as a function of external voltage and ambient conditions (temperature, choice of semiconductor, etc.). To see how it can be derived, we must examine the various reasons for current.
A p–n diode is a type of semiconductor diode based upon the p–n junction. The diode conducts current in only one direction, and it is made by joining a p-type semiconducting layer to an n-type semiconducting layer. Semiconductor diodes have multiple uses including rectification of alternating current to direct current, in the detection of ...
The Shockley ideal diode equation or the diode law (named after the bipolar junction transistor co-inventor William Bradford Shockley) models the exponential current–voltage (I–V) relationship of diodes in moderate forward or reverse bias. The article Shockley diode equation provides details.
The saturation current (or scale current), more accurately the reverse saturation current, is the part of the reverse current in a semiconductor diode caused by diffusion of minority carriers from the neutral regions to the depletion region. This current is almost independent of the reverse voltage. [1]