enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression. [1]

  3. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    The first term is the objective function from ordinary least squares (OLS) regression, corresponding to the residual sum of squares. The second term is a regularization term, not present in OLS, which penalizes large values. As a smooth finite dimensional problem is considered and it is possible to apply standard calculus tools.

  4. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. The method of least squares is a parameter estimation method in regression analysis based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the ...

  5. Non-linear least squares - Wikipedia

    en.wikipedia.org/wiki/Non-linear_least_squares

    Consider a set of data points, (,), (,), …, (,), and a curve (model function) ^ = (,), that in addition to the variable also depends on parameters, = (,, …,), with . It is desired to find the vector of parameters such that the curve fits best the given data in the least squares sense, that is, the sum of squares = = is minimized, where the residuals (in-sample prediction errors) r i are ...

  6. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Cubic, quartic and higher polynomials. For regression with high-order polynomials, the use of orthogonal polynomials is recommended. [15] Numerical smoothing and differentiation — this is an application of polynomial fitting. Multinomials in more than one independent variable, including surface fitting; Curve fitting with B-splines [12]

  7. Local regression - Wikipedia

    en.wikipedia.org/wiki/Local_regression

    Local regression or local polynomial regression, [1] also known as moving regression, [2] is a generalization of the moving average and polynomial regression. [3] Its most common methods, initially developed for scatterplot smoothing, are LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot smoothing), both pronounced / ˈ l oʊ ɛ s / LOH-ess.

  8. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Low-order polynomials tend to be smooth and high order polynomial curves tend to be "lumpy". To define this more precisely, the maximum number of inflection points possible in a polynomial curve is n-2, where n is the order of the polynomial equation. An inflection point is a location on the curve where it switches from a positive radius to ...

  9. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    For example, a researcher is building a linear regression model using a dataset that contains 1000 patients (). If the researcher decides that five observations are needed to precisely define a straight line ( m {\displaystyle m} ), then the maximum number of independent variables ( n {\displaystyle n} ) the model can support is 4, because