Search results
Results from the WOW.Com Content Network
The onset of thermal degradation dictates the maximum temperature at which a polymer can be used. It is an important limitation in how the polymer is manufactured and processed. For instance, polymers become less viscous at higher temperatures which makes injection moulding easier and faster, but thermal degradation places a ceiling temperature ...
Polymers are composed of long molecular chains which form irregular, entangled coils in the melt. Some polymers retain such a disordered structure upon freezing and readily convert into amorphous solids. In other polymers, the chains rearrange upon freezing and form partly ordered regions with a typical size of the order 1 micrometer. [3]
Polymer degradation is the reduction in the physical properties of a polymer, such as strength, caused by changes in its chemical composition.Polymers and particularly plastics are subject to degradation at all stages of their product life cycle, including during their initial processing, use, disposal into the environment and recycling. [1]
Unlike classical polymer melts, whose flow properties are largely dependent on friction between monomers, vitrimers become a viscoelastic fluid because of exchange reactions at high temperatures as well as monomer friction. [11] These two processes have different activation energies, resulting in a wide
This interferes with crystallization and lowers the polymer's melting temperature. In general, such PET is known as PETG or PET-G (polyethylene terephthalate glycol-modified). It is a clear amorphous thermoplastic that can be injection-molded, sheet-extruded or extruded as filament for 3D printing .
PTFE is a thermoplastic polymer, which is a white solid at room temperature, with a density of about 2200 kg/m 3 and a melting point of 600 K (327 °C; 620 °F). [27] It maintains high strength, toughness and self-lubrication at low temperatures down to 5 K (−268.2 °C; −450.7 °F), and good flexibility at temperatures above 194 K (−79.15 ...
In polymer physics, spherulites (from Greek sphaira = ball and lithos = stone) are spherical semicrystalline regions inside non-branched linear polymers. Their formation is associated with crystallization of polymers from the melt and is controlled by several parameters such as the number of nucleation sites, structure of the polymer molecules, cooling rate, etc. Depending on those parameters ...
In polymers the glass transition temperature, T g, is often expressed as the temperature at which the Gibbs free energy is such that the activation energy for the cooperative movement of 50 or so elements of the polymer is exceeded [citation needed]. This allows molecular chains to slide past each other when a force is applied.