Search results
Results from the WOW.Com Content Network
For any real x, Newton's method can be used to compute erfi −1 x, and for −1 ≤ x ≤ 1, the following Maclaurin series converges: = = + +, where c k is defined as above. Asymptotic expansion
Example clusterings for a dataset with the kMeans (left) and Mean shift (right) algorithms. The calculated Adjusted Rand index for these two clusterings is . The Rand index [1] or Rand measure (named after William M. Rand) in statistics, and in particular in data clustering, is a measure of the similarity between two data clusterings.
A code is defined to be equidistant if and only if there exists some constant d such that the distance between any two of the code's distinct codewords is equal to d. [4] In 1984 Arrigo Bonisoli determined the structure of linear one-weight codes over finite fields and proved that every equidistant linear code is a sequence of dual Hamming codes .
In statistics, probability theory, and information theory, a statistical distance quantifies the distance between two statistical objects, which can be two random variables, or two probability distributions or samples, or the distance can be between an individual sample point and a population or a wider sample of points.
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]
Computers typically use binary arithmetic, but to make the example easier to read, it will be given in decimal. Suppose we are using six-digit decimal floating-point arithmetic, sum has attained the value 10000.0, and the next two values of input[i] are 3.14159 and 2.71828. The exact result is 10005.85987, which rounds to 10005.9.
For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...
The closer the coefficient is to either −1 or 1, the stronger the correlation between the variables. If the variables are independent, Pearson's correlation coefficient is 0. However, because the correlation coefficient detects only linear dependencies between two variables, the converse is not necessarily true.