Search results
Results from the WOW.Com Content Network
Mechanical–electrical analogies are used to represent the function of a mechanical system as an equivalent electrical system by drawing analogies between mechanical and electrical parameters. A mechanical system by itself can be so represented, but analogies are of greatest use in electromechanical systems where there is a connection between ...
The impedance analogy is one of the two main mechanical–electrical analogies used for representing mechanical systems in the electrical domain, the other being the mobility analogy. The roles of voltage and current are reversed in these two methods, and the electrical representations produced are the dual circuits of each other.
Analogy between a hydraulic circuit (left) and an electronic circuit (right). Electronic-hydraulic analogies are the representation of electronic circuits by hydraulic circuits. Since electric current is invisible and the processes in play in electronics are often difficult to demonstrate, the various electronic components are represented by ...
The mobility analogy, also called admittance analogy or Firestone analogy, is a method of representing a mechanical system by an analogous electrical system.The advantage of doing this is that there is a large body of theory and analysis techniques concerning complex electrical systems, especially in the field of filters. [1]
The earliest such analogy is due to James Clerk Maxwell who, in 1873, associated mechanical force with electrical voltage. This analogy became so widespread that sources of voltage are still today referred to as electromotive force. The power conjugate of voltage is electric current which, in the Maxwell analogy, maps to mechanical velocity.
Electric power. Here there is an analogy between the mechanical concept of power as the scalar product of velocity and displacement, and the electrical concept that in an AC circuit with sinusoidal excitation, power is the product VI cos(φ) where φ is the phase angle between V and I, measured in RMS terms.
The thermal variables shown in the chart are not power conjugates and thus do not meet this criterion. See mechanical–electrical analogies for more detailed information on this. Even specifying power conjugate variables does not result in a unique analogy and there are at least three analogies of this sort in use.
The symbols from left to right are: stiffness element (e.g. spring), mass (rigid body), mechanical resistance (e.g. damper), force generator, velocity generator. The symbols for generators depend on which mechanical–electrical analogy is being used. The symbols shown relate to the impedance analogy.