Search results
Results from the WOW.Com Content Network
The golden ratio φ and its negative reciprocal −φ −1 are the two roots of the quadratic polynomial x 2 − x − 1. The golden ratio's negative −φ and reciprocal φ −1 are the two roots of the quadratic polynomial x 2 + x − 1. The golden ratio is also an algebraic number and even an algebraic integer.
A golden triangle. The ratio a/b is the golden ratio φ. The vertex angle is =.Base angles are 72° each. Golden gnomon, having side lengths 1, 1, and .. A golden triangle, also called a sublime triangle, [1] is an isosceles triangle in which the duplicated side is in the golden ratio to the base side:
In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or :, with approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.
If the sides are formed from the geometric progression a, ar, ar 2 then its common ratio r is given by r = √ φ where φ is the golden ratio. Its sides are therefore in the ratio 1 : √ φ : φ. Thus, the shape of the Kepler triangle is uniquely determined (up to a scale factor) by the requirement that its sides be in geometric progression.
The golden angle is the angle subtended by the smaller (red) arc when two arcs that make up a circle are in the golden ratio. In geometry, the golden angle is the smaller of the two angles created by sectioning the circumference of a circle according to the golden ratio; that is, into two arcs such that the ratio of the length of the smaller arc to the length of the larger arc is the same as ...
The system is inspired by but does not exactly correspond to human measurements, [2] and it also draws inspiration from the double unit, [further explanation needed] the Fibonacci numbers, and the golden ratio. Le Corbusier described it as a "range of harmonious measurements to suit the human scale, universally applicable to architecture and to ...
Therefore, the ratio must be the unique positive solution to this equation, the golden ratio, and the triangle must be a Kepler triangle. [ 1 ] The three edge lengths 1 {\displaystyle 1} , φ {\displaystyle {\sqrt {\varphi }}} and φ {\displaystyle \varphi } are the harmonic mean , geometric mean , and arithmetic mean , respectively, of the two ...
Apollonius of Perga discovered the curious result that the ratio of volumes of these two shapes is the same as the ratio of their surface areas. [10] Both volumes have formulas involving the golden ratio, but taken to different powers. [11] As it turns out, the icosahedron occupies less of the sphere's volume (60.54%) than the dodecahedron (66. ...