enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is ...

  3. Improper rotation - Wikipedia

    en.wikipedia.org/wiki/Improper_rotation

    An improper rotation of an object thus produces a rotation of its mirror image. The axis is called the rotation-reflection axis. [6] This is called an n-fold improper rotation if the angle of rotation, before or after reflexion, is 360°/n (where n must be even). [6] There are several different systems for naming individual improper rotations:

  4. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.

  5. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    The rotation group is a Lie group of rotations about a fixed point. This (common) fixed point or center is called the center of rotation and is usually identified with the origin. The rotation group is a point stabilizer in a broader group of (orientation-preserving) motions. For a particular rotation: The axis of rotation is a line of its ...

  6. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    This is a glide reflection, except in the special case that the translation is perpendicular to the line of reflection, in which case the combination is itself just a reflection in a parallel line. The identity isometry, defined by I ( p ) = p for all points p is a special case of a translation, and also a special case of a rotation.

  7. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    Every non-trivial rotation is determined by its axis of rotation (a line through the origin) and its angle of rotation. Rotations are not commutative (for example, rotating R 90° in the x-y plane followed by S 90° in the y-z plane is not the same as S followed by R ), making the 3D rotation group a nonabelian group .

  8. Orthogonal transformation - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_transformation

    Reflections are transformations that reverse the direction front to back, orthogonal to the mirror plane, like (real-world) mirrors do. The matrices corresponding to proper rotations (without reflection) have a determinant of +1. Transformations with reflection are represented by matrices with a determinant of −1. This allows the concept of ...

  9. Optical rotation - Wikipedia

    en.wikipedia.org/wiki/Optical_rotation

    Optical rotation, also known as ... [24] and reflection, [25] as well as nonlinear optical activity exceeding that of lithium iodate by 30 million times. ...