enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  3. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    The Laplace operator is a second-order differential operator in the n-dimensional Euclidean space, defined as the divergence of the gradient (). Thus if f {\displaystyle f} is a twice-differentiable real-valued function , then the Laplacian of f {\displaystyle f} is the real-valued function defined by:

  4. Laplace operators in differential geometry - Wikipedia

    en.wikipedia.org/wiki/Laplace_operators_in...

    The Hodge Laplacian, also known as the Laplace–de Rham operator, is a differential operator acting on differential forms. (Abstractly, it is a second order operator on each exterior power of the cotangent bundle.) This operator is defined on any manifold equipped with a Riemannian- or pseudo-Riemannian metric.

  5. Discrete Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Discrete_Laplace_operator

    Discrete Laplace operator is often used in image processing e.g. in edge detection and motion estimation applications. [4] The discrete Laplacian is defined as the sum of the second derivatives and calculated as sum of differences over the nearest neighbours of the central pixel. Since derivative filters are often sensitive to noise in an image ...

  6. Separation of variables - Wikipedia

    en.wikipedia.org/wiki/Separation_of_variables

    Thus, when one separates variables for first-order equations, one in fact moves the dx denominator of the operator to the side with the x variable, and the d(y) is left on the side with the y variable. The second-derivative operator, by analogy, breaks down as follows:

  7. Infinity Laplacian - Wikipedia

    en.wikipedia.org/wiki/Infinity_Laplacian

    Verbally, the second version is the second derivative in the direction of the gradient. In the case of the infinity Laplace equation Δ ∞ u = 0 {\displaystyle \Delta _{\infty }u=0} , the two definitions are equivalent.

  8. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Second derivative; Implicit differentiation ... Solutions of boundary value problems for the Laplace equation ... In general this gives a second-order ordinary ...

  9. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    Using notations from vector calculus, the wave equation can be written compactly as =, or =, where the double subscript denotes the second-order partial derivative with respect to time, is the Laplace operator and the d'Alembert operator, defined as: =, = + +, =.