Search results
Results from the WOW.Com Content Network
A similarity measure can take many different forms depending on the type of data being clustered and the specific problem being solved. One of the most commonly used similarity measures is the Euclidean distance, which is used in many clustering techniques including K-means clustering and Hierarchical clustering. The Euclidean distance is a ...
Semantic similarity is a metric defined over a set of documents or terms, where the idea of distance between items is based on the likeness of their meaning or semantic content [citation needed] as opposed to lexicographical similarity.
Bibliographic coupling, like co-citation, is a similarity measure that uses citation analysis to establish a similarity relationship between documents. Bibliographic coupling occurs when two works reference a common third work in their bibliographies. It is an indication that a probability exists that the two works treat a related subject matter.
In statistics, Gower's distance between two mixed-type objects is a similarity measure that can handle different types of data within the same dataset and is particularly useful in cluster analysis or other multivariate statistical techniques. Data can be binary, ordinal, or continuous variables.
Analysis of similarities (ANOSIM) is a non-parametric statistical test widely used in the field of ecology. The test was first suggested by K. R. Clarke [ 1 ] as an ANOVA -like test, where instead of operating on raw data , operates on a ranked dissimilarity matrix .
In this scenario, the similarity between the two baskets as measured by the Jaccard index would be 1/3, but the similarity becomes 0.998 using the SMC. In other contexts, where 0 and 1 carry equivalent information (symmetry), the SMC is a better measure of similarity.
The information retrieval community has emphasized the use of test collections and benchmark tasks to measure topical relevance, starting with the Cranfield Experiments of the early 1960s and culminating in the TREC evaluations that continue to this day as the main evaluation framework for information retrieval research.
This is a measure of the similarity between two samples: J = A A + B + C {\displaystyle J={\frac {A}{A+B+C}}} where A is the number of data points shared between the two samples and B and C are the data points found only in the first and second samples respectively.