Search results
Results from the WOW.Com Content Network
PEP is intended for polynomial eigenproblems, including the quadratic eigenvalue problem. Solvers based on explicit linearization, that rely on EPS solvers. Solvers that perform the linearization implicitly in a memory-efficient way, such as TOAR. A Jacobi-Davidson solver for PEP. NEP provides functionality for the solution of the nonlinear ...
In mathematics, an eigenvalue perturbation problem is that of finding the eigenvectors and eigenvalues of a system = that is perturbed from one with known eigenvectors and eigenvalues =. This is useful for studying how sensitive the original system's eigenvectors and eigenvalues x 0 i , λ 0 i , i = 1 , … n {\displaystyle x_{0i},\lambda _{0i ...
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
ScaLAPACK is a library of high-performance linear algebra routines for parallel distributed-memory machines that features functionality similar to LAPACK (solvers for dense and banded linear systems, least-squares problems, eigenvalue problems, and singular-value problem). Scilab is advanced numerical analysis package similar to MATLAB or Octave.
In computational mathematics, a matrix-free method is an algorithm for solving a linear system of equations or an eigenvalue problem that does not store the coefficient matrix explicitly, but accesses the matrix by evaluating matrix-vector products. [1]
A simple work-around is to negate the function, substituting -D T (D X) for D T (D X) and thus reversing the order of the eigenvalues, since LOBPCG does not care if the matrix of the eigenvalue problem is positive definite or not. [9] LOBPCG for PCA and SVD is implemented in SciPy since revision 1.4.0 [13]
Rayleigh quotient iteration is an eigenvalue algorithm which extends the idea of the inverse iteration by using the Rayleigh quotient to obtain increasingly accurate eigenvalue estimates. Rayleigh quotient iteration is an iterative method , that is, it delivers a sequence of approximate solutions that converges to a true solution in the limit.
The eigenvalues of a matrix are always computable. We will now discuss how these difficulties manifest in the basic QR algorithm. This is illustrated in Figure 2. Recall that the ellipses represent positive-definite symmetric matrices. As the two eigenvalues of the input matrix approach each other, the input ellipse changes into a circle.