enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pascal's theorem - Wikipedia

    en.wikipedia.org/wiki/Pascal's_theorem

    The converse is the Braikenridge–Maclaurin theorem, named for 18th-century British mathematicians William Braikenridge and Colin Maclaurin , which states that if the three intersection points of the three pairs of lines through opposite sides of a hexagon lie on a line, then the six vertices of the hexagon lie on a conic; the conic may be ...

  3. Hexagon - Wikipedia

    en.wikipedia.org/wiki/Hexagon

    The longest diagonals of a regular hexagon, connecting diametrically opposite vertices, are twice the length of one side. From this it can be seen that a triangle with a vertex at the center of the regular hexagon and sharing one side with the hexagon is equilateral, and that the regular hexagon can be partitioned into six equilateral triangles.

  4. Extended side - Wikipedia

    en.wikipedia.org/wiki/Extended_side

    Pascal's theorem states that if six arbitrary points are chosen on a conic section (i.e., ellipse, parabola or hyperbola) and joined by line segments in any order to form a hexagon, then the three pairs of opposite sides of the hexagon (extended if necessary) meet in three points which lie on a straight line, called the Pascal line of the hexagon.

  5. Brianchon's theorem - Wikipedia

    en.wikipedia.org/wiki/Brianchon's_theorem

    These may be considered sides of a hexagon whose sixth side is the line at infinity, but there is no line at infinity in the affine plane. In two instances, a line from a (non-existent) vertex to the opposite vertex would be a line parallel to one of the five tangent lines. Brianchon's theorem stated only for the affine plane would therefore ...

  6. Pappus's hexagon theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_hexagon_theorem

    That is, the points of intersection of the pairs of opposite sides of the hexagon ADEGBZ are collinear. Lemmas XV and XVII are that, if the point M is determined as the intersection of HK and BG, then the points A, M, and D are collinear. That is, the points of intersection of the pairs of opposite sides of the hexagon BEKHZG are collinear.

  7. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    From a tangential quadrilateral, one can form a hexagon with two 180° angles, by placing two new vertices at two opposite points of tangency; all six of the sides of this hexagon lie on lines tangent to the inscribed circle, so its diagonals meet at a point.

  8. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    Concurrent lines arise in the dual of Pappus's hexagon theorem. For each side of a cyclic hexagon, extend the adjacent sides to their intersection, forming a triangle exterior to the given side. Then the segments connecting the circumcenters of opposite triangles are concurrent. [8]

  9. Braikenridge–Maclaurin theorem - Wikipedia

    en.wikipedia.org/wiki/Braikenridge–Maclaurin...

    Namely, Pascal's theorem states that given six points on a conic (the vertices of a hexagon), the lines defined by opposite sides intersect in three collinear points. This can be reversed to construct the possible locations for a sixth point, given five existing ones.