Search results
Results from the WOW.Com Content Network
A is a subset of B (denoted ) and, conversely, B is a superset of A (denoted ). In mathematics, a set A is a subset of a set B if all elements of A are also elements of B; B is then a superset of A. It is possible for A and B to be equal; if they are unequal, then A is a proper subset of B.
The free group F S with free generating set S can be constructed as follows. S is a set of symbols, and we suppose for every s in S there is a corresponding "inverse" symbol, s −1, in a set S −1. Let T = S ∪ S −1, and define a word in S to be any written product of elements of T. That is, a word in S is an element of the monoid ...
Standard set theory symbols with their usual meanings (is a member of, equals, is a subset of, is a superset of, is a proper superset of, is a proper subset of, union, intersection, empty set) ∧ ∨ → ↔ ¬ ∀ ∃ Standard logical symbols with their usual meanings (and, or, implies, is equivalent to, not, for all, there exists) ≡
If A is a subset of B, then one can also say that B is a superset of A, that A is contained in B, or that B contains A. In symbols, A ⊆ B means that A is a subset of B, and B ⊇ A means that B is a superset of A. Some authors use the symbols ⊂ and ⊃ for subsets, and others use these symbols only for proper subsets. For clarity, one can ...
The section "⊂ and ⊃ symbols" only mentions the symbols ⊊ and ⊋ as something some authors prefer not to use. The reference there does not mention these symbols. It would be useful to find a positive reference for authors that do prefer to use ⊊ and ⊋ for proper sub/supersets, and use ⊂ and ⊃ where the two sets may be equal.
A three-dimensional plot of an indicator function, shown over a square two-dimensional domain (set X): the "raised" portion overlays those two-dimensional points which are members of the "indicated" subset (A). In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset ...
A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e} ). [2] [3] If H is a subgroup of G, then G is sometimes called an overgroup of H.
In his controversial 1878 paper, Cantor explicitly defined the notion of "power" of sets and used it to prove that the set of all natural numbers and the set of all rational numbers are equinumerous (an example where a proper subset of an infinite set is equinumerous to the original set), and that the Cartesian product of even a ...