Search results
Results from the WOW.Com Content Network
The bounds these inequalities give on a finite sample are less tight than those the Chebyshev inequality gives for a distribution. To illustrate this let the sample size N = 100 and let k = 3. Chebyshev's inequality states that at most approximately 11.11% of the distribution will lie at least three standard deviations away from the mean.
In probability theory, the multidimensional Chebyshev's inequality [1] is a generalization of Chebyshev's inequality, which puts a bound on the probability of the event that a random variable differs from its expected value by more than a specified amount.
Toggle the table of contents. Chebyshev's sum inequality. ... There is also a continuous version of Chebyshev's sum inequality: If f and g are real-valued, ...
In mathematical analysis, the Chebyshev–Markov–Stieltjes inequalities are inequalities related to the problem of moments that were formulated in the 1880s by Pafnuty Chebyshev and proved independently by Andrey Markov and (somewhat later) by Thomas Jan Stieltjes. [1]
Bhatia–Davis inequality, an upper bound on the variance of any bounded probability distribution; Bernstein inequalities (probability theory) Boole's inequality; Borell–TIS inequality; BRS-inequality; Burkholder's inequality; Burkholder–Davis–Gundy inequalities; Cantelli's inequality; Chebyshev's inequality; Chernoff's inequality; Chung ...
Such inequalities are of importance in several fields, including communication complexity (e.g., in proofs of the gap Hamming problem [13]) and graph theory. [14] An interesting anti-concentration inequality for weighted sums of independent Rademacher random variables can be obtained using the Paley–Zygmund and the Khintchine inequalities. [15]
If you’re stuck on today’s Wordle answer, we’re here to help—but beware of spoilers for Wordle 1260 ahead. Let's start with a few hints.
The theorem refines Chebyshev's inequality by including the factor of 4/9, made possible by the condition that the distribution be unimodal. It is common, in the construction of control charts and other statistical heuristics, to set λ = 3 , corresponding to an upper probability bound of 4/81= 0.04938..., and to construct 3-sigma limits to ...