enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    Example distribution with positive skewness. These data are from experiments on wheat grass growth. In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. The skewness value can be positive, zero, negative, or undefined.

  3. Wave nonlinearity - Wikipedia

    en.wikipedia.org/wiki/Wave_nonlinearity

    is the zero-mean wave surface elevation; is the Hilbert transform the angle brackets indicate averaging over many waves; Values for the skewness are positive with typical values between 0 and 1, where values of 1 indicate high skewness.

  4. Skewness risk - Wikipedia

    en.wikipedia.org/wiki/Skewness_risk

    Skewness risk in forecasting models utilized in the financial field is the risk that results when observations are not spread symmetrically around an average value, but instead have a skewed distribution. As a result, the mean and the median can be different.

  5. Nonparametric skew - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_skew

    In statistics and probability theory, the nonparametric skew is a statistic occasionally used with random variables that take real values. [1] [2] It is a measure of the skewness of a random variable's distribution—that is, the distribution's tendency to "lean" to one side or the other of the mean.

  6. Skew normal distribution - Wikipedia

    en.wikipedia.org/wiki/Skew_normal_distribution

    The exponentially modified normal distribution is another 3-parameter distribution that is a generalization of the normal distribution to skewed cases. The skew normal still has a normal-like tail in the direction of the skew, with a shorter tail in the other direction; that is, its density is asymptotically proportional to for some positive .

  7. L-moment - Wikipedia

    en.wikipedia.org/wiki/L-moment

    Another advantage L-moments have over conventional moments is that their existence only requires the random variable to have finite mean, so the L-moments exist even if the higher conventional moments do not exist (for example, for Student's t distribution with low degrees of freedom). A finite variance is required in addition in order for the ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    Comparison of mean, median and mode of two log-normal distributions with different skewness. The mode is the point of global maximum of the probability density function. In particular, by solving the equation (⁡) ′ =, we get that: ⁡ [] =.