Search results
Results from the WOW.Com Content Network
The Windows Task Manager utility for Windows XP and Server 2003, in its Performance tab, shows three counters related to commit charge: Total is the amount of pagefile-backed virtual address space in use, i.e., the current commit charge. This is composed of main memory (RAM) and disk (pagefiles).
How Virtual Memory Works from HowStuffWorks.com (in fact explains only swapping concept, and not virtual memory concept) Linux swap space management (outdated, as the author admits) Guide On Optimizing Virtual Memory Speed (outdated) Virtual Memory Page Replacement Algorithms; Windows XP: How to manually change the size of the virtual memory ...
By reducing the I/O activity caused by paging requests, virtual memory compression can produce overall performance improvements. The degree of performance improvement depends on a variety of factors, including the availability of any compression co-processors, spare bandwidth on the CPU, speed of the I/O channel, speed of the physical memory, and the compressibility of the physical memory ...
Virtual memory combines active RAM and inactive memory on DASD [a] to form a large range of contiguous addresses.. In computing, virtual memory, or virtual storage, [b] is a memory management technique that provides an "idealized abstraction of the storage resources that are actually available on a given machine" [3] which "creates the illusion to users of a very large (main) memory".
A page, memory page, or virtual page is a fixed-length contiguous block of virtual memory, described by a single entry in a page table.It is the smallest unit of data for memory management in an operating system that uses virtual memory.
This means that 48 bits of virtual page number are translated, giving a virtual address space of up to 256 TB. For some processors, a mode can be enabled with a fifth table, the 512-entry page-map level 5 table ; this means that 57 bits of virtual page number are translated, giving a virtual address space of up to 128 PB.
KSM performs memory deduplication by scanning through main memory for physical pages that have identical content, and identifies the virtual pages that are mapped to those physical pages. It leaves one page unchanged, and re-maps each duplicate page to point to the same physical page, after which it releases the extra physical pages for re-use.
Windows XP supports a larger system virtual address space—1.3 GB—of which the contiguous virtual address space that can be used by device drivers is 960 MB. The Windows XP Memory Manager is redesigned to consume less paged pool, allowing for more caching and greater availability of paged pool for any component that needs it.