Search results
Results from the WOW.Com Content Network
FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]
10+ million images in 400+ scene classes, with 5000 to 30,000 images per class. 10,000,000 image, label 2018 [5] Zhou et al Ego 4D A massive-scale, egocentric dataset and benchmark suite collected across 74 worldwide locations and 9 countries, with over 3,670 hours of daily-life activity video. Object bounding boxes, transcriptions, labeling.
In object-class detection, the task is to find the locations and sizes of all objects in an image that belong to a given class. Examples include upper torsos, pedestrians, and cars. Face detection simply answers two question, 1. are there any human faces in the collected images or video? 2. where is the face located? Face-detection algorithms ...
Facial recognition software at a US airport Automatic ticket gate with face recognition system in Osaka Metro Morinomiya Station. A facial recognition system [1] is a technology potentially capable of matching a human face from a digital image or a video frame against a database of faces.
A collection of Vietnamese multiple-choice questions for evaluating MRC models. This corpus includes 2,783 Vietnamese multiple-choice questions. 2,783 Question-answer pairs Question Answering/Machine Reading Comprehension 2020 [335] Nguyen et al. Open-Domain Question Answering Goes Conversational via Question Rewriting
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]
Any human face can be considered to be a combination of these standard faces. For example, one's face might be composed of the average face plus 10% from eigenface 1, 55% from eigenface 2, and even −3% from eigenface 3. Remarkably, it does not take many eigenfaces combined together to achieve a fair approximation of most faces.
DeepFace is a deep learning facial recognition system created by a research group at Facebook.It identifies human faces in digital images. The program employs a nine-layer neural network with over 120 million connection weights and was trained on four million images uploaded by Facebook users.