enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transverse isotropy - Wikipedia

    en.wikipedia.org/wiki/Transverse_isotropy

    A transversely isotropic material is one with physical properties that are symmetric about an axis that is normal to a plane of isotropy. This transverse plane has infinite planes of symmetry and thus, within this plane, the material properties are the same in all directions. Hence, such materials are also known as "polar anisotropic" materials.

  3. Elasticity tensor - Wikipedia

    en.wikipedia.org/wiki/Elasticity_tensor

    The elasticity tensor is a fourth-rank tensor describing the stress-strain relation in a linear elastic material. [ 1 ] [ 2 ] Other names are elastic modulus tensor and stiffness tensor . Common symbols include C {\displaystyle \mathbf {C} } and Y {\displaystyle \mathbf {Y} } .

  4. Lamé parameters - Wikipedia

    en.wikipedia.org/wiki/Lamé_parameters

    In homogeneous and isotropic materials, these define Hooke's law in 3D, = + ⁡ (), where σ is the stress tensor, ε the strain tensor, I the identity matrix and tr the trace function. Hooke's law may be written in terms of tensor components using index notation as σ i j = 2 μ ε i j + λ δ i j ε k k , {\displaystyle \sigma _{ij}=2\mu ...

  5. Template:Elastic moduli - Wikipedia

    en.wikipedia.org/wiki/Template:Elastic_moduli

    The stiffness matrix (9 by 9, or 6 by 6 in Voigt notation) in Hooke's law (in 3D) can be parametrized by only two components for homogeneous and isotropic materials. One may choose whichever pair one prefers among the elastic moduli given below.

  6. Zener ratio - Wikipedia

    en.wikipedia.org/wiki/Zener_ratio

    Cubic materials are special orthotropic materials that are invariant with respect to 90° rotations with respect to the principal axes, i.e., the material is the same along its principal axes. Due to these additional symmetries the stiffness tensor can be written with just three different material properties like

  7. Linear elasticity - Wikipedia

    en.wikipedia.org/wiki/Linear_elasticity

    In the isotropic case, the stiffness tensor may be written: [citation needed] = + (+) where is the Kronecker delta, K is the bulk modulus (or incompressibility), and is the shear modulus (or rigidity), two elastic moduli. If the medium is inhomogeneous, the isotropic model is sensible if either the medium is piecewise-constant or weakly ...

  8. Stiffness matrix - Wikipedia

    en.wikipedia.org/wiki/Stiffness_matrix

    The full stiffness matrix A is the sum of the element stiffness matrices. In particular, for basis functions that are only supported locally, the stiffness matrix is sparse. For many standard choices of basis functions, i.e. piecewise linear basis functions on triangles, there are simple formulas for the element stiffness matrices.

  9. Direct stiffness method - Wikipedia

    en.wikipedia.org/wiki/Direct_stiffness_method

    The direct stiffness method originated in the field of aerospace. Researchers looked at various approaches for analysis of complex airplane frames. These included elasticity theory, energy principles in structural mechanics, flexibility method and matrix stiffness method. It was through analysis of these methods that the direct stiffness method ...