Search results
Results from the WOW.Com Content Network
Horizontal partitioning splits one or more tables by row, usually within a single instance of a schema and a database server. It may offer an advantage by reducing index size (and thus search effort) provided that there is some obvious, robust, implicit way to identify in which partition a particular row will be found, without first needing to search the index, e.g., the classic example of the ...
Creating a view across the two newly created tables restores the original table with a performance penalty, but accessing the static data alone will show higher performance. A columnar database can be regarded as a database that has been vertically partitioned until each column is stored in its own table.
Normalization splits up data to avoid redundancy (duplication) by moving commonly repeating groups of data into new tables. Normalization therefore tends to increase the number of tables that need to be joined in order to perform a given query, but reduces the space required to hold the data and the number of places where it needs to be updated if the data changes.
In SQL the UNION clause combines the results of two SQL queries into a single table of all matching rows. The two queries must result in the same number of columns and compatible data types in order to unite. Any duplicate records are automatically removed unless UNION ALL is used.
The queries given in the examples above will join the Employee and department tables using the DepartmentID column of both tables. Where the DepartmentID of these tables match (i.e. the join-predicate is satisfied), the query will combine the LastName, DepartmentID and DepartmentName columns from the two tables into a result row. Where the ...
In the examples below each trigger is modifying a different table, by looking at what is being modified you can see some common applications of when different trigger types are used. The following is an Oracle syntax example of a row level trigger that is called AFTER an update FOR EACH ROW affected.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Trino is an open-source distributed SQL query engine designed to query large data sets distributed over one or more heterogeneous data sources. [1] Trino can query data lakes that contain a variety of file formats such as simple row-oriented CSV and JSON data files to more performant open column-oriented data file formats like ORC or Parquet [2] [3] residing on different storage systems like ...