Search results
Results from the WOW.Com Content Network
Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model. [4]
C-logit Model [19] - Captures correlations between alternatives using 'commonality factor' Paired Combinatorial Logit Model [20] - Suitable for route choice problems. Generalized Extreme Value Model [21] - General class of model, derived from the random utility model [17] to which multinomial logit and nested logit belong
where () is the binary entropy function [1] = () () In probability theory and statistics , the logistic distribution is a continuous probability distribution . Its cumulative distribution function is the logistic function , which appears in logistic regression and feedforward neural networks .
Gumbel has also shown that the estimator r ⁄ (n+1) for the probability of an event — where r is the rank number of the observed value in the data series and n is the total number of observations — is an unbiased estimator of the cumulative probability around the mode of the distribution.
NLOGIT is an extension of the econometric and statistical software package LIMDEP.In addition to the estimation tools in LIMDEP, NLOGIT provides programs for estimation, model simulation and analysis of multinomial choice data, such as brand choice, [1] transportation mode and for survey and market data in which consumers choose among a set of competing alternatives.
For example, in discrete choice models, one has conditional logit models, nested logit models, generalized logit models, and the like, to distinguish between certain variants and fit a multinomial logit model to, e.g., transport choices. A variable such as cost differs depending on the choice, for example, taxi is more expensive than bus, which ...
In statistics, the ordered logit model or proportional odds logistic regression is an ordinal regression model—that is, a regression model for ordinal dependent variables—first considered by Peter McCullagh. [1]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more