Search results
Results from the WOW.Com Content Network
Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer propylene. Polypropylene belongs to the group of polyolefins and is partially crystalline and non-polar.
Polymer morphology is a microscale property that is largely dictated by the amorphous or crystalline portions of the polymer chains and their influence on each other. Microscopy techniques are especially useful in determining these microscale properties, as the domains created by the polymer morphology are large enough to be viewed using modern ...
For example, atactic polypropylene is usually amorphous and transparent while syndiotactic polypropylene, which has crystallinity ~50%, is opaque. [30] Crystallinity also affects dyeing of polymers: crystalline polymers are more difficult to stain than amorphous ones because the dye molecules penetrate through amorphous regions with greater ease.
All polymers (amorphous or semi-crystalline) go through glass transitions. The glass-transition temperature ( T g ) is a crucial physical parameter for polymer manufacturing, processing, and use. Below T g , molecular motions are frozen and polymers are brittle and glassy.
The amorphous polyalphaolefins are synthesized by a catalyst system based on a Z-N supported catalyst and an alkyl aluminum co-catalyst. The polymerization process produces a mostly amorphous polymer with low crystallinity. Crystallinity depends on the catalyst system and on the use of co-monomers.
Polyamorphism is also an important area in pharmaceutical science. The amorphous form of a drug typically has much better aqueous solubility (compared to the analogous crystalline form) but the actual local structure in an amorphous pharmaceutical can be different, depending on the method used to form the amorphous phase.
Porous polymers are a class of porous media materials in which monomers form 2D and 3D polymers containing angstrom- to nanometer-scale pores formed by the arrangement of the monomers. They may be either crystalline or amorphous.
Solid-phase epitaxy (SPE) is a transition between the amorphous and crystalline phases of a material. It is usually produced by depositing a film of amorphous material on a crystalline substrate, then heating it to crystallize the film. The single-crystal substrate serves as a template for crystal growth.