Search results
Results from the WOW.Com Content Network
All eight planets in the Solar System orbit the Sun in the direction of the Sun's rotation, which is counterclockwise when viewed from above the Sun's north pole. Six of the planets also rotate about their axis in this same direction. The exceptions – the planets with retrograde rotation – are Venus and Uranus.
This template is an infobox for planets. Template parameters [Edit template data] This template prefers block formatting of parameters. Parameter Description Type Status extrasolarplanet extrasolarplanet no description Unknown optional exosolar planets exosolar planets no description Unknown optional minorplanet minorplanet When given a value (e.g., yes), it changes labels, section headings ...
Earth's rotation axis moves with respect to the fixed stars (inertial space); the components of this motion are precession and nutation. It also moves with respect to Earth's crust; this is called polar motion. Precession is a rotation of Earth's rotation axis, caused primarily by external torques from the gravity of the Sun, Moon and other bodies.
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars (inertial space).
Most of the larger moons orbit their planets in prograde direction, matching the direction of planetary rotation; Neptune's moon Triton is the largest to orbit in the opposite, retrograde manner. [50] Most larger objects rotate around their own axes in the prograde direction relative to their orbit, though the rotation of Venus is retrograde. [51]
For most planets, the rotation period and axial tilt (also called obliquity) are not known, but a large number of planets have been detected with very short orbits (where tidal effects are greater) that will probably have reached an equilibrium rotation that can be predicted (i.e. tidal lock, spin–orbit resonances, and non-resonant equilibria ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The poles of astronomical bodies are determined based on their axis of rotation in relation to the celestial poles of the celestial sphere. Astronomical bodies include stars, planets, dwarf planets and small Solar System bodies such as comets and minor planets (e.g., asteroids), as well as natural satellites and minor-planet moons.