enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb.

  3. Rhombic dodecahedral honeycomb - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedral_honeycomb

    The vertices with the obtuse rhombic face angles have 4 cells. The vertices with the acute rhombic face angles have 6 cells. The rhombic dodecahedron can be twisted on one of its hexagonal cross-sections to form a trapezo-rhombic dodecahedron, which is the cell of a somewhat similar tessellation, the Voronoi diagram of hexagonal close-packing.

  4. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    The rhombic dodecahedron packs together to fill space. The rhombic dodecahedron can be seen as a degenerate pyritohedron where the 6 special edges have been reduced to zero length, reducing the pentagons into rhombic faces. The rhombic dodecahedron has several stellations, the first of which is also a parallelohedral spacefiller.

  5. Synergetics (Fuller) - Wikipedia

    en.wikipedia.org/wiki/Synergetics_(Fuller)

    2.5 edges 1/2, vol. = 1/8 of 20 Duo-Tet Cube 3 24 MITEs Octahedron 4 dual of cube, spacefills w/ tet Rhombic Triacontahedron 5 radius = ~0.9994, vol. = 120 Ts Rhombic Triacontahedron 5+ radius = 1, vol. = 120 Es Rhombic Dodecahedron 6 space-filler, dual to cuboctahedron Rhombic Triacontahedron 7.5 radius = phi/sqrt(2) Icosahedron

  6. Space-filling polyhedron - Wikipedia

    en.wikipedia.org/wiki/Space-filling_polyhedron

    Any parallelepiped tessellates Euclidean 3-space, as do the five parallelohedra including the cube, hexagonal prism, truncated octahedron, and rhombic dodecahedron. Other space-filling polyhedra include the plesiohedra and stereohedra , polyhedra whose tilings have symmetries taking every tile to every other tile, including the gyrobifastigium ...

  7. Honeycomb (geometry) - Wikipedia

    en.wikipedia.org/wiki/Honeycomb_(geometry)

    The regular hyperbolic honeycombs thus include two with four or five dodecahedra meeting at each edge; their dihedral angles thus are π/2 and 2π/5, both of which are less than that of a Euclidean dodecahedron. Apart from this effect, the hyperbolic honeycombs obey the same topological constraints as Euclidean honeycombs and polychora.

  8. Table of polyhedron dihedral angles - Wikipedia

    en.wikipedia.org/wiki/Table_of_polyhedron...

    Great stellated dodecahedron {⁠ 5 / 2 ⁠,3} (⁠ 5 / 2 ⁠. ⁠ 5 / 2 ⁠. ⁠ 5 / 2 ⁠) arccos (⁠ √ 5 / 5 ⁠) 63.435° Great icosahedron {3, ⁠ 5 / 2 ⁠} ⁠ (3.3.3.3.3) / 2 ⁠ arccos (⁠ √ 5 / 3 ⁠) 41.810° Quasiregular polyhedra (Rectified regular) Tetratetrahedron: r{3,3} (3.3.3.3) arccos (-⁠ 1 / 3 ⁠) 109.471 ...

  9. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    [1] [2] There are different truncations of a rhombic triacontahedron into a topological rhombicosidodecahedron: Prominently its rectification (left), the one that creates the uniform solid (center), and the rectification of the dual icosidodecahedron (right), which is the core of the dual compound.