Search results
Results from the WOW.Com Content Network
In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb.
The vertices with the obtuse rhombic face angles have 4 cells. The vertices with the acute rhombic face angles have 6 cells. The rhombic dodecahedron can be twisted on one of its hexagonal cross-sections to form a trapezo-rhombic dodecahedron, which is the cell of a somewhat similar tessellation, the Voronoi diagram of hexagonal close-packing.
2.5 edges 1/2, vol. = 1/8 of 20 Duo-Tet Cube 3 24 MITEs Octahedron 4 dual of cube, spacefills w/ tet Rhombic Triacontahedron 5 radius = ~0.9994, vol. = 120 Ts Rhombic Triacontahedron 5+ radius = 1, vol. = 120 Es Rhombic Dodecahedron 6 space-filler, dual to cuboctahedron Rhombic Triacontahedron 7.5 radius = phi/sqrt(2) Icosahedron
Any parallelepiped tessellates Euclidean 3-space, as do the five parallelohedra including the cube, hexagonal prism, truncated octahedron, and rhombic dodecahedron. Other space-filling polyhedra include the plesiohedra and stereohedra , polyhedra whose tilings have symmetries taking every tile to every other tile, including the gyrobifastigium ...
A 3-dimensional uniform honeycomb is a honeycomb in 3-space composed of uniform polyhedral cells, and having all vertices the same (i.e., the group of [isometries of 3-space that preserve the tiling] is transitive on vertices). There are 28 convex examples in Euclidean 3-space, [1] also called the Archimedean honeycombs.
It shares its vertex arrangement with the small stellated truncated dodecahedron and the uniform compounds of 6 or 12 pentagrammic prisms.It additionally shares its edge arrangement with the rhombicosidodecahedron (having the square faces in common), and with the small dodecicosidodecahedron (having the decagonal faces in common).
The rhombic dodecahedron, generated from four line segments, no two of which are parallel to a common plane. Its most symmetric form is generated by the four long diagonals of a cube. [2] It tiles space to form the rhombic dodecahedral honeycomb. The elongated dodecahedron, generated from five line segments, with two triples of coplanar segments.
The rhombic dodecahedron packs together to fill space. The rhombic dodecahedron can be seen as a degenerate pyritohedron where the 6 special edges have been reduced to zero length, reducing the pentagons into rhombic faces. The rhombic dodecahedron has several stellations, the first of which is also a parallelohedral spacefiller.