Search results
Results from the WOW.Com Content Network
In mathematical writing, the greater-than sign is typically placed between two values being compared and signifies that the first number is greater than the second number. Examples of typical usage include 1.5 > 1 and 1 > −2. The less-than sign and greater-than sign always "point" to the smaller number.
A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. ... 8 p − 1 ≡ 1 (mod p 2): 3, 1093, 3511
1. Means "greater than or equal to". That is, whatever A and B are, A ≥ B is equivalent to A > B or A = B. 2. Between two groups, may mean that the second one is a subgroup of the first one. 1. Means "much less than" and "much greater than".
The relation not greater than can also be represented by , the symbol for "greater than" bisected by a slash, "not". The same is true for not less than, . The notation a ≠ b means that a is not equal to b; this inequation sometimes is considered a form of strict inequality. [4]
No even number greater than 2 is prime because any such number can be expressed as the product /. Therefore, every prime number other than 2 is an odd number, and is called an odd prime. [10] Similarly, when written in the usual decimal system, all prime numbers larger than 5 end in 1, 3, 7, or 9. The numbers that end with other digits are all ...
8 + (−3) = 8 − 3 = 5 and (−2) + 7 = 7 − 2 = 5. In the first example, a credit of 8 is combined with a debt of 3 , which yields a total credit of 5 . If the negative number has greater magnitude, then the result is negative:
a highly abundant number has a sum of positive divisors that is greater than any lesser number; that is, σ(n) > σ(m) for every positive integer m < n. Counterintuitively, the first seven highly abundant numbers are not abundant numbers. a prime number has only 1 and itself as divisors; that is, d(n) = 2
For if every even number greater than 4 is the sum of two odd primes, adding 3 to each even number greater than 4 will produce the odd numbers greater than 7 (and 7 itself is equal to 2+2+3). In 2013, Harald Helfgott released a proof of Goldbach's weak conjecture. [2]