Search results
Results from the WOW.Com Content Network
Proof of Maxwell's relations: There are four real variables ( T , S , p , V ) {\displaystyle (T,S,p,V)} , restricted on the 2-dimensional surface of possible thermodynamic states. This allows us to use the previous two propositions.
A relation is said to be coanalytic if its complement is an analytic set. Silver's dichotomy is a statement about the equivalence classes of a coanalytic equivalence relation, stating any coanalytic equivalence relation either has countably many equivalence classes, or else there is a perfect set of reals that are each incomparable to each other. [4]
In a semiconductor with an arbitrary density of states, i.e. a relation of the form = between the density of holes or electrons and the corresponding quasi Fermi level (or electrochemical potential) , the Einstein relation is [11] [12] =, where is the electrical mobility (see § Proof of the general case for a proof of this relation).
A relation R is called intransitive if it is not transitive, that is, if xRy and yRz, but not xRz, for some x, y, z. In contrast, a relation R is called antitransitive if xRy and yRz always implies that xRz does not hold. For example, the relation defined by xRy if xy is an even number is intransitive, [13] but not antitransitive. [14]
Some authors normalize these in a different way differing by factors of 2, in which case the right hand side of the Legendre relation is π i or π i / 2. This relation can be proved by integrating the Weierstrass zeta function about the boundary of a fundamental region and applying Cauchy's residue theorem.
In mathematics, Euler's identity [note 1] (also known as Euler's equation) is the equality + = where . is Euler's number, the base of natural logarithms, is the imaginary unit, which by definition satisfies =, and
The relation remains valid for a geodesic on an arbitrary surface of revolution. A statement of the general version of Clairaut's relation is: [1] Let γ be a geodesic on a surface of revolution S, let ρ be the distance of a point of S from the axis of rotation, and let ψ be the angle between γ and the meridian of S. Then ρ sin ψ is ...
The equality equivalence relation is the finest equivalence relation on any set, while the universal relation, which relates all pairs of elements, is the coarsest. The relation " ∼ {\displaystyle \sim } is finer than ≈ {\displaystyle \approx } " on the collection of all equivalence relations on a fixed set is itself a partial order ...