enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Barycenter (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Barycenter_(astronomy)

    In astronomy, the barycenter (or barycentre; from Ancient Greek βαρύς (barús) 'heavy' and κέντρον (kéntron) 'center') [1] is the center of mass of two or more bodies that orbit one another and is the point about which the bodies orbit. A barycenter is a dynamical point, not a physical object.

  3. Center of mass - Wikipedia

    en.wikipedia.org/wiki/Center_of_mass

    The barycenter is the point between two objects where they balance each other; it is the center of mass where two or more celestial bodies orbit each other. When a moon orbits a planet , or a planet orbits a star , both bodies are actually orbiting a point that lies away from the center of the primary (larger) body. [ 25 ]

  4. Barycentric coordinate system - Wikipedia

    en.wikipedia.org/wiki/Barycentric_coordinate_system

    where, as above, sarea stands for signed area. All three signs are plus if triangle ABC is positively oriented, minus otherwise. The relations between trilinear and barycentric coordinates are obtained by substituting these formulas into the above formulas that express barycentric coordinates as ratios of areas.

  5. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    In classical mechanics, the two-body problem is to calculate and predict the motion of two massive bodies that are orbiting each other in space. The problem assumes that the two bodies are point particles that interact only with one another; the only force affecting each object arises from the other one, and all other objects are ignored.

  6. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.

  7. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  8. Astronomical coordinate systems - Wikipedia

    en.wikipedia.org/wiki/Astronomical_coordinate...

    Angles greater than 360° (2 π) or less than 0° may need to be reduced to the range 0°−360° (0–2 π) depending upon the particular calculating machine or program. The cosine of a latitude (declination, ecliptic and Galactic latitude, and altitude) are never negative by definition, since the latitude varies between −90° and +90°.

  9. Barycentric - Wikipedia

    en.wikipedia.org/wiki/Barycentric

    Barycenter or barycentre, the center of mass of two or more bodies that orbit each other; Barycentric coordinates, coordinates defined by the common center of mass of two or more bodies (see Barycenter) Barycentric Coordinate Time, a coordinate time standard in the Solar system; Barycentric Dynamical Time, a former time standard in the Solar System