Search results
Results from the WOW.Com Content Network
An example calibration plot. Calibration can be assessed using a calibration plot (also called a reliability diagram). [3] [5] A calibration plot shows the proportion of items in each class for bands of predicted probability or score (such as a distorted probability distribution or the "signed distance to the hyperplane" in a support vector ...
An associative classifier (AC) is a kind of supervised learning model that uses association rules to assign a target value. The term associative classification was coined by Bing Liu et al., [1] in which the authors defined a model made of rules "whose right-hand side are restricted to the classification class attribute".
Tanagra is a free suite of machine learning software for research and academic purposes developed by Ricco Rakotomalala at the Lumière University Lyon 2, France. [1] [2] Tanagra supports several standard data mining tasks such as: Visualization, Descriptive statistics, Instance selection, feature selection, feature construction, regression, factor analysis, clustering, classification and ...
In machine learning, one-class classification (OCC), also known as unary classification or class-modelling, tries to identify objects of a specific class amongst all objects, by primarily learning from a training set containing only the objects of that class, [1] although there exist variants of one-class classifiers where counter-examples are used to further refine the classification boundary.
Oracle Data Mining (ODM) is an option of Oracle Database Enterprise Edition. It contains several data mining and data analysis algorithms for classification, prediction, regression, associations, feature selection, anomaly detection, feature extraction, and specialized analytics.
Mining Schema: a list of all fields used in the model. This can be a subset of the fields as defined in the data dictionary. It contains specific information about each field, such as: Name (attribute name): must refer to a field in the data dictionary; Usage type (attribute usageType): defines the way a field is to be used in the model.
ID3 is harder to use on continuous data than on factored data (factored data has a discrete number of possible values, thus reducing the possible branch points). If the values of any given attribute are continuous , then there are many more places to split the data on this attribute, and searching for the best value to split by can be time ...
There have been some efforts to define standards for the data mining process, for example, the 1999 European Cross Industry Standard Process for Data Mining (CRISP-DM 1.0) and the 2004 Java Data Mining standard (JDM 1.0). Development on successors to these processes (CRISP-DM 2.0 and JDM 2.0) was active in 2006 but has stalled since.