Search results
Results from the WOW.Com Content Network
The minimum inhibitory concentration (MIC) and minimum bactericidal concentration are used to measure in vitro activity of antimicrobial agents. They are good indicators of antimicrobial potency, but don't give any information relating to time-dependent antimicrobial killing (the so-called post antibiotic effect).
The minimum bactericidal concentration (MBC) is the lowest concentration of an antibacterial agent required to kill a particular bacterium. [1] It can be determined from broth dilution minimum inhibitory concentration (MIC) tests by subculturing to agar plates that do not contain the test agent.
Depending on the pathogen and antibiotics being tested, the media can be changed and/or adjusted. The antimicrobial concentration is adjusted into the correct concentration by mixing stock antimicrobial with media. The adjusted antimicrobial is serially diluted into multiple tubes (or wells) to obtain a gradient. The dilution rate can be ...
A selectivity factor higher than 10 is optimal. This means the concentration of antibiotic is sufficient to kill untransfected cells but not toxic enough to kill transfected cells. A selectivity factor lower than 10 means the concentration of antibiotic needed for selection is too close to the toxic concentration for the transfected cells.
Bactericidal antibiotics kill bacteria; bacteriostatic antibiotics slow their growth or reproduction. Bactericidal antibiotics that inhibit cell wall synthesis: the beta-lactam antibiotics ( penicillin derivatives ( penams ), cephalosporins ( cephems ), monobactams , and carbapenems ) and vancomycin .
IC 50 values are typically expressed as molar concentration. IC 50 is commonly used as a measure of antagonist drug potency in pharmacological research. IC 50 is comparable to other measures of potency, such as EC 50 for excitatory drugs. EC 50 represents the dose or plasma concentration required for obtaining 50% of a maximum effect in vivo. [1]
Ampicillin is a time-dependent antibiotic. Its bacterial killing is largely related to the time that drug concentrations in the body remain above the minimum inhibitory concentration (MIC). The duration of exposure will thus correspond to how much bacterial killing will occur.
The bactericidal activity of marbofloxacin is concentration dependent, with susceptible bacteria cell death occurring within 20–30 minutes of exposure. Like other fluoroquinolones, marbofloxacin has demonstrated a significant post-antibiotic effect for both gram– and + bacteria and is active in both stationary and growth phases of bacterial ...