enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Advance ratio - Wikipedia

    en.wikipedia.org/wiki/Advance_ratio

    The advance ratio is critical for determining the efficiency of a propeller. At different advance ratios, the propeller may produce more or less thrust. Engineers use this ratio to optimize the design of the propeller and the engine, ensuring that the vehicle operates efficiently at its intended cruising speed, see propeller theory.

  3. Borrowing base - Wikipedia

    en.wikipedia.org/wiki/Borrowing_base

    Different proportions (or 'advance rates') of accounts receivable and of the inventory are included into borrowing base. Typical industry standards are 75–85% for accounts receivable [ 1 ] [ 12 ] and 25–60% for inventory, [ 7 ] and the advance rates can vary dramatically depending on the circumstances.

  4. Advances in Difference Equations - Wikipedia

    en.wikipedia.org/wiki/Advances_in_Difference...

    Advances in Difference Equations is a peer-reviewed mathematics journal covering research on difference equations, published by Springer Open.. The journal was established in 2004 and publishes articles on theory, methodology, and application of difference and differential equations.

  5. Divided differences - Wikipedia

    en.wikipedia.org/wiki/Divided_differences

    In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. [citation needed] Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation.

  6. Speeds and feeds - Wikipedia

    en.wikipedia.org/wiki/Speeds_and_feeds

    Cutting speed may be defined as the rate at the workpiece surface, irrespective of the machining operation used. A cutting speed for mild steel of 100 ft/min is the same whether it is the speed of the cutter passing over the workpiece, such as in a turning operation, or the speed of the cutter moving past a workpiece, such as in a milling operation.

  7. Finite difference coefficient - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_coefficient

    For arbitrary stencil points and any derivative of order < up to one less than the number of stencil points, the finite difference coefficients can be obtained by solving the linear equations [6] ( s 1 0 ⋯ s N 0 ⋮ ⋱ ⋮ s 1 N − 1 ⋯ s N N − 1 ) ( a 1 ⋮ a N ) = d !

  8. Calculator - Wikipedia

    en.wikipedia.org/wiki/Calculator

    The fundamental difference between a calculator and computer is that a computer can be programmed in a way that allows the program to take different branches according to intermediate results, while calculators are pre-designed with specific functions (such as addition, multiplication, and logarithms) built in.

  9. Difference engine - Wikipedia

    en.wikipedia.org/wiki/Difference_engine

    A difference engine is an automatic mechanical calculator designed to tabulate polynomial functions. It was designed in the 1820s, and was first created by Charles Babbage . The name difference engine is derived from the method of finite differences , a way to interpolate or tabulate functions by using a small set of polynomial co-efficients.