Search results
Results from the WOW.Com Content Network
In computer science, a for-loop or for loop is a control flow statement for specifying iteration. Specifically, a for-loop functions by running a section of code repeatedly until a certain condition has been satisfied. For-loops have two parts: a header and a body. The header defines the iteration and the body is the code executed once per ...
In computer programming, foreach loop (or for-each loop) is a control flow statement for traversing items in a collection. foreach is usually used in place of a standard for loop statement . Unlike other for loop constructs, however, foreach loops [ 1 ] usually maintain no explicit counter: they essentially say "do this to everything in this ...
Compare this with the do while loop, which tests the condition/expression after the loop has executed. For example, in the languages C, Java, C#, [2] Objective-C, and C++, (which use the same syntax in this case), the code fragment
A conditional loop has the potential to become an infinite loop when nothing in the loop's body can affect the outcome of the loop's conditional statement. However, infinite loops can sometimes be used purposely, often with an exit from the loop built into the loop implementation for every computer language , but many share the same basic ...
Some languages may use a different naming convention for this type of loop. For example, the Pascal and Lua languages have a "repeat until" loop, which continues to run until the control expression is true and then terminates. In contrast a "while" loop runs while the control expression is true and terminates once the expression becomes false.
The following example is done in Ada which supports both early exit from loops and loops with test in the middle. Both features are very similar and comparing both code snippets will show the difference: early exit must be combined with an if statement while a condition in the middle is a self-contained construct.
Loop unrolling, also known as loop unwinding, is a loop transformation technique that attempts to optimize a program's execution speed at the expense of its binary size, which is an approach known as space–time tradeoff. The transformation can be undertaken manually by the programmer or by an optimizing compiler.
The following C code examples illustrate two threads that share a global integer i. The first thread uses busy-waiting to check for a change in the value of i : #include <pthread.h> #include <stdatomic.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> /* i is global, so it is visible to all functions.