enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Negative binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Negative_binomial_distribution

    Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure, [1] so identifying the specific parametrization used is crucial in any ...

  3. Poisson regression - Wikipedia

    en.wikipedia.org/wiki/Poisson_regression

    A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables. Negative binomial regression is a popular generalization of Poisson regression because it loosens the highly restrictive assumption that the variance is equal to the mean made by the Poisson model. The traditional negative ...

  4. Binomial regression - Wikipedia

    en.wikipedia.org/wiki/Binomial_regression

    Binomial regression models are essentially the same as binary choice models, one type of discrete choice model: the primary difference is in the theoretical motivation (see comparison). In machine learning , binomial regression is considered a special case of probabilistic classification , and thus a generalization of binary classification .

  5. Zero-inflated model - Wikipedia

    en.wikipedia.org/wiki/Zero-inflated_model

    As the examples above show, zero-inflated data can arise as a mixture of two distributions. The first distribution generates zeros. The second distribution, which may be a Poisson distribution, a negative binomial distribution or other count distribution, generates counts, some of which may be zeros.

  6. Relationships among probability distributions - Wikipedia

    en.wikipedia.org/wiki/Relationships_among...

    If X is a negative binomial random variable with r large, P near 1, and r(1 − P) = λ, then X approximately has a Poisson distribution with mean λ. Consequences of the CLT: If X is a Poisson random variable with large mean, then for integers j and k , P( j ≤ X ≤ k ) approximately equals to P ( j − 1/2 ≤ Y ≤ k + 1/2) where Y is a ...

  7. Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_distribution

    Poisson regression and negative binomial regression Poisson regression and negative binomial regression are useful for analyses where the dependent (response) variable is the count (0, 1, 2, ... ) of the number of events or occurrences in an interval.

  8. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    Such procedures differ in the assumptions made about the distribution of the variables in the population. If the variable is positive with low values and represents the repetition of the occurrence of an event, then count models like the Poisson regression or the negative binomial model may be used.

  9. Conjugate prior - Wikipedia

    en.wikipedia.org/wiki/Conjugate_prior

    For example, the values and of a beta distribution can be thought of as corresponding to successes and failures if the posterior mode is used to choose an optimal parameter setting, or successes and failures if the posterior mean is used to choose an optimal parameter setting. In general, for nearly all conjugate prior distributions, the ...