Search results
Results from the WOW.Com Content Network
Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations.
In statistics, nonlinear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables. The data are fitted by a method of successive approximations (iterations).
The earliest regression form was seen in Isaac Newton's work in 1700 while studying equinoxes, being credited with introducing "an embryonic linear aggression analysis" as "Not only did he perform the averaging of a set of data, 50 years before Tobias Mayer, but summing the residuals to zero he forced the regression line to pass through the ...
For example, if the functional form of the model does not match the data, R 2 can be high despite a poor model fit. Anscombe's quartet consists of four example data sets with similarly high R 2 values, but data that sometimes clearly does not fit the regression line. Instead, the data sets include outliers, high-leverage points, or non-linearities.
Nonlinear analysis is often necessary when the data is recorded from a nonlinear system. Nonlinear systems can exhibit complex dynamic effects including bifurcations, chaos, harmonics and subharmonics that cannot be analyzed using simple linear methods. Nonlinear data analysis is closely related to nonlinear system identification. [133]
The first widely used algorithm for solving this problem is an active-set method published by Lawson and Hanson in their 1974 book Solving Least Squares Problems. [ 5 ] : 291 In pseudocode , this algorithm looks as follows: [ 1 ] [ 2 ]
The scientists working on the two research projects decided to publish their work at the same time when they realized they had separately reached a similar conclusion.
The idea was that a regression analysis could produce a demand or supply curve because they are formed by the path between prices and quantities demanded or supplied. The problem was that the observational data did not form a demand or supply curve as such, but rather a cloud of point observations that took different shapes under varying market ...