Search results
Results from the WOW.Com Content Network
The set S = {42} has 42 as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that S. Every subset of the natural numbers has a lower bound since the natural numbers have a least element (0 or 1, depending on convention). An infinite subset of the natural numbers cannot be bounded from above.
There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...
A real number x is called an upper bound for S if x ≥ s for all s ∈ S. A real number x is the least upper bound (or supremum) for S if x is an upper bound for S and x ≤ y for every upper bound y of S. The least-upper-bound property states that any non-empty set of real numbers that has an upper bound must have a least upper bound in real ...
However, there is a vast gap between the tightest lower bounds and the tightest upper bounds. There are also very few numbers r and s for which we know the exact value of R(r, s). Computing a lower bound L for R(r, s) usually requires exhibiting a blue/red colouring of the graph K L−1 with no blue K r subgraph and no red K s subgraph.
A real set with upper bounds and its supremum. A set S of real numbers is called bounded from above if there exists some real number k (not necessarily in S) such that k ≥ s for all s in S. The number k is called an upper bound of S. The terms bounded from below and lower bound are similarly defined. A set S is bounded if it
But this is just the least element of the whole poset, if it has one, since the empty subset of a poset P is conventionally considered to be both bounded from above and from below, with every element of P being both an upper and lower bound of the empty subset. Other common names for the least element are bottom and zero (0).
Thus, the infimum or meet of a collection of subsets is the greatest lower bound while the supremum or join is the least upper bound. In this context, the inner limit, lim inf X n, is the largest meeting of tails of the sequence, and the outer limit, lim sup X n, is the smallest joining of tails of the sequence. The following makes this precise.
the number is an upper bound of , meaning : is the least upper bound of ... Assume that there exists a lower upper bound ...