Search results
Results from the WOW.Com Content Network
One implementation can be described as arranging the data sequence in a two-dimensional array and then sorting the columns of the array using insertion sort. The worst-case time complexity of Shellsort is an open problem and depends on the gap sequence used, with known complexities ranging from O ( n 2 ) to O ( n 4/3 ) and Θ( n log 2 n ).
Bubble sort has been occasionally referred to as a "sinking sort". [9] For example, Donald Knuth describes the insertion of values at or towards their desired location as letting "[the value] settle to its proper level", and that "this method of sorting has sometimes been called the sifting or sinking technique. [10]
In Java, the Arrays.sort() methods use merge sort or a tuned quicksort depending on the datatypes and for implementation efficiency switch to insertion sort when fewer than seven array elements are being sorted. [29] The Linux kernel uses merge sort for its linked lists. [30]
The heapsort algorithm can be divided into two phases: heap construction, and heap extraction. The heap is an implicit data structure which takes no space beyond the array of objects to be sorted; the array is interpreted as a complete binary tree where each array element is a node and each node's parent and child links are defined by simple arithmetic on the array indexes.
Bucket sort, or bin sort, is a sorting algorithm that works by distributing the elements of an array into a number of buckets. Each bucket is then sorted individually, either using a different sorting algorithm, or by recursively applying the bucket sorting algorithm.
The following Python implementation [1] [circular reference] performs cycle sort on an array, counting the number of writes to that array that were needed to sort it. Python def cycle_sort ( array ) -> int : """Sort an array in place and return the number of writes.""" writes = 0 # Loop through the array to find cycles to rotate.
The best case input is an array that is already sorted. In this case insertion sort has a linear running time (i.e., O(n)).During each iteration, the first remaining element of the input is only compared with the right-most element of the sorted subsection of the array.
Here input is the input array to be sorted, key returns the numeric key of each item in the input array, count is an auxiliary array used first to store the numbers of items with each key, and then (after the second loop) to store the positions where items with each key should be placed, k is the maximum value of the non-negative key values and ...