Search results
Results from the WOW.Com Content Network
For example, a force of 1 g on an object sitting on the Earth's surface is caused by the mechanical force exerted in the upward direction by the ground, keeping the object from going into free fall. The upward contact force from the ground ensures that an object at rest on the Earth's surface is accelerating relative to the free-fall condition.
A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.
The force is proportional to the product of the two masses and inversely proportional to the square of the distance between them: [11] Diagram of two masses attracting one another = where F is the force between the masses; G is the Newtonian constant of gravitation (6.674 × 10 −11 m 3 ⋅kg −1 ⋅s −2);
For astronomical bodies other than Earth, and for short distances of fall at other than "ground" level, g in the above equations may be replaced by (+) where G is the gravitational constant, M is the mass of the astronomical body, m is the mass of the falling body, and r is the radius from the falling object to the center of the astronomical body.
By making this assumption, g takes the following form: = (i.e., the direction of g is antiparallel to the direction of r, and the magnitude of g depends only on the magnitude, not direction, of r). Plugging this in, and using the fact that ∂ V is a spherical surface with constant r and area 4 π r 2 {\displaystyle 4\pi r^{2}} ,
The gravitational constant G is a key quantity in Newton's law of universal gravitation. The gravitational constant is an empirical physical constant involved in the calculation of gravitational effects in Sir Isaac Newton's law of universal gravitation and in Albert Einstein's theory of general relativity.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For example, Maxwell's equations of electromagnetism are linear in the electric and magnetic fields, and charge and current distributions (i.e. the sum of two solutions is also a solution); another example is Schrödinger's equation of quantum mechanics, which is linear in the wavefunction.