enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. John M. Lee - Wikipedia

    en.wikipedia.org/wiki/John_M._Lee

    Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Vol. 218 (Second ed.). New York London: Springer-Verlag. ISBN 978-1-4419-9981-8. OCLC 808682771. Introduction to Smooth Manifolds, Springer-Verlag, Graduate Texts in Mathematics, 2002, 2nd edition 2012 [6] Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds.

  3. Smooth structure - Wikipedia

    en.wikipedia.org/wiki/Smooth_structure

    A smooth structure on a manifold is a collection of smoothly equivalent smooth atlases. Here, a smooth atlas for a topological manifold is an atlas for such that each transition function is a smooth map, and two smooth atlases for are smoothly equivalent provided their union is again a smooth atlas for .

  4. Congruence (manifolds) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(manifolds)

    Introduction to smooth manifolds. New York: Springer. ISBN 0-387-95448-1. A textbook on manifold theory. See also the same author's textbooks on topological manifolds (a lower level of structure) and Riemannian geometry (a higher level of structure).

  5. Atlas (topology) - Wikipedia

    en.wikipedia.org/wiki/Atlas_(topology)

    In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual charts that, roughly speaking, describe individual regions of the manifold. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fiber bundles.

  6. Tubular neighborhood - Wikipedia

    en.wikipedia.org/wiki/Tubular_neighborhood

    A normal tube to a smooth curve is a manifold defined as the union of all discs such that all the discs have the same fixed radius; the center of each disc lies on the curve; and; each disc lies in a plane normal to the curve where the curve passes through that disc's center.

  7. Lie group action - Wikipedia

    en.wikipedia.org/wiki/Lie_group_action

    Michele Audin, Torus actions on symplectic manifolds, Birkhauser, 2004 John Lee, Introduction to smooth manifolds , chapter 9, ISBN 978-1-4419-9981-8 Frank Warner, Foundations of differentiable manifolds and Lie groups , chapter 3, ISBN 978-0-387-90894-6

  8. Category of manifolds - Wikipedia

    en.wikipedia.org/wiki/Category_of_manifolds

    The objects of Man • p are pairs (,), where is a manifold along with a basepoint , and its morphisms are basepoint-preserving p-times continuously differentiable maps: e.g. : (,) (,), such that () =. [1] The category of pointed manifolds is an example of a comma category - Man • p is exactly ({}), where {} represents an arbitrary singleton ...

  9. Template:Lee Introduction to Smooth Manifolds - Wikipedia

    en.wikipedia.org/wiki/Template:Lee_Introduction...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us