Search results
Results from the WOW.Com Content Network
The practical importance of high (i.e. close to 1) transference numbers of the charge-shuttling ion (i.e. Li+ in lithium-ion batteries) is related to the fact, that in single-ion devices (such as lithium-ion batteries) electrolytes with the transfer number of the ion near 1, concentration gradients do not develop. A constant electrolyte ...
Metabolic acidosis is a serious electrolyte disorder characterized by an imbalance in the body's acid-base balance.Metabolic acidosis has three main root causes: increased acid production, loss of bicarbonate, and a reduced ability of the kidneys to excrete excess acids. [5]
Electrolyte imbalance, or water-electrolyte imbalance, is an abnormality in the concentration of electrolytes in the body. Electrolytes play a vital role in maintaining homeostasis in the body. They help to regulate heart and neurological function, fluid balance , oxygen delivery , acid–base balance and much more.
The anion gap [1] [2] (AG or AGAP) is a value calculated from the results of multiple individual medical lab tests.It may be reported with the results of an electrolyte panel, which is often performed as part of a comprehensive metabolic panel.
Hyperchloremia is an electrolyte disturbance in which there is an elevated level of chloride ions in the blood. [1] The normal serum range for chloride is 96 to 106 mEq/L, [2] therefore chloride levels at or above 110 mEq/L usually indicate kidney dysfunction as it is a regulator of chloride concentration. [3]
The most obvious cause is a kidney or systemic disorder, including amyloidosis, [2] polycystic kidney disease, [3] electrolyte imbalance, [4] [5] or some other kidney defect. [2] The major causes of acquired nephrogenic diabetes insipidus that produce clinical symptoms (e.g., polyuria) in the adult are lithium toxicity and high blood calcium.
Acid–base imbalance is an abnormality of the human body's normal balance of acids and bases that causes the plasma pH to deviate out of the normal range (7.35 to 7.45). In the fetus , the normal range differs based on which umbilical vessel is sampled ( umbilical vein pH is normally 7.25 to 7.45; umbilical artery pH is normally 7.18 to 7.38 ...
Lactic acidosis can result from increased anaerobic metabolism. However, the effect of acid–base balance can be variable as patients with large GI losses can become alkalotic. In cases of hemorrhagic shock, hematocrit and hemoglobin can be severely decreased. However, with a reduction in plasma volume, hematocrit and hemoglobin can be ...