Search results
Results from the WOW.Com Content Network
Gaussian functions are the Green's function for the (homogeneous and isotropic) diffusion equation (and to the heat equation, which is the same thing), a partial differential equation that describes the time evolution of a mass-density under diffusion.
The Gaussian quadrature chooses more suitable points instead, so even a linear function approximates the function better (the black dashed line). As the integrand is the polynomial of degree 3 (y(x) = 7x 3 – 8x 2 – 3x + 3), the 2-point Gaussian quadrature rule even returns an exact result.
The electromagnetic stress–energy tensor in the International System of Quantities (ISQ), which underlies the SI, is [1] = [], where is the electromagnetic tensor and where is the Minkowski metric tensor of metric signature (− + + +) and the Einstein summation convention over repeated indices is used.
One difference between the Gaussian and SI systems is in the factor 4π in various formulas that relate the quantities that they define. With SI electromagnetic units, called rationalized, [3] [4] Maxwell's equations have no explicit factors of 4π in the formulae, whereas the inverse-square force laws – Coulomb's law and the Biot–Savart law – do have a factor of 4π attached to the r 2.
Craig's formula was later extended by Behnad (2020) [5] for the Q-function of the sum of two non-negative variables, ... (QPSK) in additive white Gaussian noise, ...
"Table of zeros and Gaussian Weights of certain Associated Laguerre Polynomials and the related Hermite Polynomials". Mathematics of Computation. 18 (88): 598–616. doi: 10.1090/S0025-5718-1964-0166397-1. JSTOR 2002946. MR 0166397. Ehrich, S. (2002). "On stratified extensions of Gauss-Laguerre and Gauss-Hermite quadrature formulas".
A Gaussian integer is either the zero, one of the four units (±1, ±i), a Gaussian prime or composite.The article is a table of Gaussian Integers x + iy followed either by an explicit factorization or followed by the label (p) if the integer is a Gaussian prime.
Carl Friedrich Gauss was the first to derive the Gauss–Legendre quadrature rule, doing so by a calculation with continued fractions in 1814. [4] He calculated the nodes and weights to 16 digits up to order n=7 by hand. Carl Gustav Jacob Jacobi discovered the connection between the quadrature rule and the orthogonal family of Legendre polynomials.