enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Intersection number (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Intersection_number_(graph...

    The intersection number of the graph is the smallest number such that there exists a representation of this type for which the union of the sets in has elements. [1] The problem of finding an intersection representation of a graph with a given number of elements is known as the intersection graph basis problem. [10]

  3. Intersection graph - Wikipedia

    en.wikipedia.org/wiki/Intersection_graph

    The line graph of a graph G is defined as the intersection graph of the edges of G, where we represent each edge as the set of its two endpoints. A string graph is the intersection graph of curves on a plane. A graph has boxicity k if it is the intersection graph of multidimensional boxes of dimension k, but not of any smaller dimension.

  4. Intersection number - Wikipedia

    en.wikipedia.org/wiki/Intersection_number

    Let X be a Riemann surface.Then the intersection number of two closed curves on X has a simple definition in terms of an integral. For every closed curve c on X (i.e., smooth function :), we can associate a differential form of compact support, the Poincaré dual of c, with the property that integrals along c can be calculated by integrals over X:

  5. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    This proves that all points in the intersection are the same distance from the point E in the plane P, in other words all points in the intersection lie on a circle C with center E. [5] This proves that the intersection of P and S is contained in C. Note that OE is the axis of the circle. Now consider a point D of the circle C. Since C lies in ...

  6. Scheinerman's conjecture - Wikipedia

    en.wikipedia.org/wiki/Scheinerman's_conjecture

    In mathematics, Scheinerman's conjecture, now a theorem, states that every planar graph is the intersection graph of a set of line segments in the plane. This conjecture was formulated by E. R. Scheinerman in his Ph.D. thesis , following earlier results that every planar graph could be represented as the intersection graph of a set of simple curves in the plane (Ehrlich, Even & Tarjan 1976).

  7. Buffon's needle problem - Wikipedia

    en.wikipedia.org/wiki/Buffon's_needle_problem

    For simplicity in the algebraic formulation ahead, let a = b = t = 2l such that the original result in Buffon's problem is P(A) = P(B) = ⁠ 1 / π ⁠. Furthermore, let N = 100 drops. Now let us examine P(AB) for Laplace's result, that is, the probability the needle intersects both a horizontal and a vertical line. We know that

  8. Graph operations - Wikipedia

    en.wikipedia.org/wiki/Graph_operations

    Less commonly (though more consistent with the general definition of union in mathematics) the union of two graphs is defined as the graph (V 1 ∪ V 2, E 1 ∪ E 2). graph intersection: G 1 ∩ G 2 = (V 1 ∩ V 2, E 1 ∩ E 2); [1] graph join: . Graph with all the edges that connect the vertices of the first graph with the vertices of the ...

  9. De Morgan's laws - Wikipedia

    en.wikipedia.org/wiki/De_Morgan's_laws

    De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.