Search results
Results from the WOW.Com Content Network
The cam can be seen as a device that converts rotational motion to reciprocating (or sometimes oscillating) motion. [clarification needed] [3] A common example is the camshaft of an automobile, which takes the rotary motion of the engine and converts it into the reciprocating motion necessary to operate the intake and exhaust valves of the cylinders.
A camshaft operating two valves. A camshaft is a shaft that contains a row of pointed cams in order to convert rotational motion to reciprocating motion.Camshafts are used in piston engines (to operate the intake and exhaust valves), [1] [2] mechanically controlled ignition systems and early electric motor speed controllers.
The engine configuration describes the fundamental operating principles by which internal combustion engines are categorized.. Piston engines are often categorized by their cylinder layout, valves and camshafts.
Combustion generates a great deal of heat, and some of this transfers to the walls of the engine. Failure will occur if the body of the engine is allowed to reach too high a temperature; either the engine will physically fail, or any lubricants used will degrade to the point that they no longer protect the engine.
In general a cam and follower mechanism's energy is transferred from cam to follower. The camshaft is rotated and, according to the cam profile, the follower moves up and down. Nowadays, slightly different types of eccentric cam followers are also available, in which energy is transferred from the follower to the cam.
Diagram of a crankcase scavenged valveless 2-stroke engine in operation. Some SI engines are crankcase scavenged and do not use poppet valves. Instead, the crankcase and the part of the cylinder below the piston is used as a pump. The intake port is connected to the crankcase through a reed valve or a rotary disk valve driven by the engine. For ...
The long stroke necessitated a raised engine block deck, a design also shared with later units. All 1.9s from 1989 on are equipped with a roller camshaft and roller lifters. The camshaft and water pump are driven by the timing belt. This engine is a non-interference design. Output is 86 hp (64 kW) and 100 lb⋅ft (136 N⋅m) with a carburetor.
The cam's shape determines the piston's stroke length, timing, and speed. These factors directly influence the engine's performance characteristics. In a cam engine, the cam is connected to a drive mechanism, usually a shaft. This shaft rotates the cam at a specific speed. The rotation of the cam is synchronized with the engine's combustion cycle.