Search results
Results from the WOW.Com Content Network
The major minus pitch technique also works for inch-based threads, but you must first calculate the pitch by converting the fraction of threads-per-inch (TPI) into a decimal. For example, a screw with a pitch of 1/20 in (20 threads per inch) has a pitch of 0.050 in and a 1 ⁄ 13 in pitch (13 threads per inch) has a pitch of 0.077 in.
For Morse taper-shank drill bits, the standard continues in 1/64 inch increments up to 1¾ inch, then 1/32 inch increments up to 2¼ inch, 1/16 inch increments up to 3 inches, 1/8 inch increments up to 3¼ inches, and a single 1/4 inch increment to 3½ inches. One aspect of this method of sizing is that the size increment between drill bits ...
That is, the value of an octal "10" is the same as a decimal "8", an octal "20" is a decimal "16", and so on. In a hexadecimal system, there are 16 digits, 0 through 9 followed, by convention, with A through F. That is, a hexadecimal "10" is the same as a decimal "16" and a hexadecimal "20" is the same as a decimal "32".
The hands value has at most one digit after the decimal mark, and has an optional fraction. ... 4 hands (38.75 inches) {{convert|9.2+3 ... (61–67 inches; 155–170 ...
A decimal floating-point number can be encoded in several ways, the different ways represent different precisions, for example 100.0 is encoded as 1000×10 −1, while 100.00 is encoded as 10000×10 −2.
There is no requirement to preserve the payload of a quiet NaN or signaling NaN, and conversion from the external character sequence may turn a signaling NaN into a quiet NaN. The original binary value will be preserved by converting to decimal and back again using: [58] 5 decimal digits for binary16, 9 decimal digits for binary32,
By default, the output value is rounded to adjust its precision to match that of the input. An input such as 1234 is interpreted as 1234 ± 0.5, while 1200 is interpreted as 1200 ± 50, and the output value is displayed accordingly, taking into account the scale factor used in the conversion.
For example, while a fixed-point representation that allocates 8 decimal digits and 2 decimal places can represent the numbers 123456.78, 8765.43, 123.00, and so on, a floating-point representation with 8 decimal digits could also represent 1.2345678, 1234567.8, 0.000012345678, 12345678000000000, and so on.