Search results
Results from the WOW.Com Content Network
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...
This is especially true of cryptographic hash functions, which may be used to detect many data corruption errors and verify overall data integrity; if the computed checksum for the current data input matches the stored value of a previously computed checksum, there is a very high probability the data has not been accidentally altered or corrupted.
The salt and hash are then stored in the database. To later test if a password a user enters is correct, the same process can be performed on it (appending that user's salt to the password and calculating the resultant hash): if the result does not match the stored hash, it could not have been the correct password that was entered.
The following tables compare general and technical information for a number of cryptographic hash functions. See the individual functions' articles for further information. This article is not all-inclusive or necessarily up-to-date. An overview of hash function security/cryptanalysis can be found at hash function security summary.
Comparison of supported cryptographic hash functions. Here hash functions are defined as taking an arbitrary length message and producing a fixed size output that is virtually impossible to use for recreating the original message.
SHA-2 basically consists of two hash algorithms: SHA-256 and SHA-512. SHA-224 is a variant of SHA-256 with different starting values and truncated output. SHA-384 and the lesser-known SHA-512/224 and SHA-512/256 are all variants of SHA-512. SHA-512 is more secure than SHA-256 and is commonly faster than SHA-256 on 64-bit machines such as AMD64.
A rolling hash (also known as recursive hashing or rolling checksum) is a hash function where the input is hashed in a window that moves through the input.. A few hash functions allow a rolling hash to be computed very quickly—the new hash value is rapidly calculated given only the old hash value, the old value removed from the window, and the new value added to the window—similar to the ...
The first weakness of the simple checksum is that it is insensitive to the order of the blocks (bytes) in the data word (message). If the order is changed, the checksum value will be the same and the change will not be detected. The second weakness is that the universe of checksum values is small, being equal to the chosen modulus.