enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression. [1]

  3. Non-linear least squares - Wikipedia

    en.wikipedia.org/wiki/Non-linear_least_squares

    Consider a set of data points, (,), (,), …, (,), and a curve (model function) ^ = (,), that in addition to the variable also depends on parameters, = (,, …,), with . It is desired to find the vector of parameters such that the curve fits best the given data in the least squares sense, that is, the sum of squares = = is minimized, where the residuals (in-sample prediction errors) r i are ...

  4. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In recent decades, new methods have been developed for robust regression, regression involving correlated responses such as time series and growth curves, regression in which the predictor (independent variable) or response variables are curves, images, graphs, or other complex data objects, regression methods accommodating various types of ...

  5. Outline of regression analysis - Wikipedia

    en.wikipedia.org/wiki/Outline_of_regression_analysis

    Regression analysis – use of statistical techniques for learning about the relationship between one or more dependent variables (Y) and one or more independent variables (X). Overview articles [ edit ]

  6. Weighted least squares - Wikipedia

    en.wikipedia.org/wiki/Weighted_least_squares

    Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.

  7. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    where n is a non-negative integer that defines the degree of the polynomial. A polynomial with a degree of 0 is simply a constant function; with a degree of 1 is a line; with a degree of 2 is a quadratic; with a degree of 3 is a cubic, and so on. Historically, polynomial models are among the most frequently used empirical models for curve fitting.

  8. Partial least squares regression - Wikipedia

    en.wikipedia.org/wiki/Partial_least_squares...

    Partial least squares (PLS) regression is a statistical method that bears some relation to principal components regression and is a reduced rank regression [1]; instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space of maximum ...

  9. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    It is remarkable that the sum of squares of the residuals and the sample mean can be shown to be independent of each other, using, e.g. Basu's theorem.That fact, and the normal and chi-squared distributions given above form the basis of calculations involving the t-statistic: