Search results
Results from the WOW.Com Content Network
A single isolated body can start in a state which is not one of thermodynamic equilibrium, and can change till thermodynamic equilibrium is reached. Thermal equilibrium is a relation between two bodies or closed systems, in which transfers are allowed only of energy and take place through a partition permeable to heat, and in which the ...
In order that a system may be in its own internal state of thermodynamic equilibrium, it is of course necessary, but not sufficient, that it be in its own internal state of thermal equilibrium; it is possible for a system to reach internal mechanical equilibrium before it reaches internal thermal equilibrium. [57]
A few different types of equilibrium are listed below. Thermal equilibrium: When the temperature throughout a system is uniform, the system is in thermal equilibrium. Mechanical equilibrium: If at every point within a given system there is no change in pressure with time, and there is no movement of material, the system is in mechanical ...
[5] [6] [7] These concepts of temperature and of thermal equilibrium are fundamental to thermodynamics and were clearly stated in the nineteenth century. The name 'zeroth law' was invented by Ralph H. Fowler in the 1930s, long after the first, second, and third laws were widely recognized.
Thus, the two systems are in thermal equilibrium with each other, or they are in mutual equilibrium. Another consequence of equivalence is that thermal equilibrium is described as a transitive relation: [7]: 56 [10] If A is in thermal equilibrium with B and if B is in thermal equilibrium with C, then A is in thermal equilibrium with C.
In physics, thermalisation (or thermalization) is the process of physical bodies reaching thermal equilibrium through mutual interaction. In general, the natural tendency of a system is towards a state of equipartition of energy and uniform temperature that maximizes the system's entropy.
An equilibrium state is mathematically ascertained by seeking the extrema of a thermodynamic potential function, whose nature depends on the constraints imposed on the system. For example, a chemical reaction at constant temperature and pressure will reach equilibrium at a minimum of its components' Gibbs free energy and a maximum of their entropy.
One statement of the zeroth law of thermodynamics is that if two systems are each in thermal equilibrium with a third system, then they are also in thermal equilibrium with each other. [90] [91] [92] This statement helps to define temperature but it does not, by itself, complete the definition.