Search results
Results from the WOW.Com Content Network
The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.
What links here; Upload file; Special pages; Printable version; Page information; Get shortened URL; Download QR code
The tensor product of commutative algebras is of frequent use in algebraic geometry. For affine schemes X , Y , Z with morphisms from X and Z to Y , so X = Spec( A ), Y = Spec( R ), and Z = Spec( B ) for some commutative rings A , R , B , the fiber product scheme is the affine scheme corresponding to the tensor product of algebras:
Roughly speaking, the tensor product is the metric space completion of the ordinary tensor product. This is an example of a topological tensor product. The tensor product allows Hilbert spaces to be collected into a symmetric monoidal category. [1]
To get a general theory, one needs to consider a ring structure on .One can define the product () to be (see Tensor product of algebras).This formula is multilinear over N in each variable; and so defines a ring structure on the tensor product, making into a commutative N-algebra, called the tensor product of fields.
In particular, any tensor product of R-modules can be constructed, if so desired, as a quotient of a tensor product of abelian groups by imposing the R-balanced product property. More category-theoretically, let σ be the given right action of R on M ; i.e., σ( m , r ) = m · r and τ the left action of R of N .
Upload file; Search. Search. ... Download as PDF; ... an area of mathematics, the projective tensor product of two locally convex topological vector spaces is a ...
In mathematics, the tensor product of representations is a tensor product of vector spaces underlying representations together with the factor-wise group action on the product. This construction, together with the Clebsch–Gordan procedure, can be used to generate additional irreducible representations if one already knows a few.