Search results
Results from the WOW.Com Content Network
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
The product is isolated from the mixture by the following work-up: [3] Synthesis of 4-methylcyclohexene with work-up step in red. A concentrated solution of sodium chloride in water, known as a brine solution, is added to the mixture and the layers are allowed to separate. The brine is used to remove any acid or water from the organic layer.
An illustrative example is the effect of catalysts to speed the decomposition of hydrogen peroxide into water and oxygen: . 2 H 2 O 2 → 2 H 2 O + O 2. This reaction proceeds because the reaction products are more stable than the starting compound, but this decomposition is so slow that hydrogen peroxide solutions are commercially available.
In thermodynamics, an isobaric process is a type of thermodynamic process in which the pressure of the system stays constant: ΔP = 0. The heat transferred to the system does work, but also changes the internal energy (U) of the system. This article uses the physics sign convention for work, where positive work is work done by the system.
Process analytical chemistry (PAC) is the application of analytical chemistry with specialized techniques, algorithms, and sampling equipment for solving problems related to chemical processes. It is a specialized form of analytical chemistry used for process manufacturing similar to process analytical technology (PAT) used in the ...
In analytical chemistry, sample preparation (working-up) refers to the ways in which a sample is treated prior to its analyses. Preparation is a very important step in most analytical techniques, because the techniques are often not responsive to the analyte in its in-situ form, or the results are distorted by interfering species .
The process chemistry group at Boehringer Ingelheim, for example, targets a VTO of less than 1 for any given synthetic step or chemical process. Additionally, the raw conversion cost of an API synthesis (in dollars per batch) can be calculated from the VTO, given the operating cost and usable capacity of a particular reactor.
The Wacker process or the Hoechst-Wacker process (named after the chemical companies of the same name) refers to the oxidation of ethylene to acetaldehyde in the presence of palladium(II) chloride and copper(II) chloride as the catalyst. [1]