Search results
Results from the WOW.Com Content Network
A quantifier that operates within a specific domain or set, as opposed to an unbounded or universal quantifier that applies to all elements of a particular type. branching quantifier A type of quantifier in formal logic that allows for the expression of dependencies between different quantified variables, representing more complex relationships ...
The order of quantifiers is critical to meaning, as is illustrated by the following two propositions: For every natural number n, there exists a natural number s such that s = n 2. This is clearly true; it just asserts that every natural number has a square. The meaning of the assertion in which the order of quantifiers is reversed is different:
The following axiomatization of PFL, one of two proposed in Kuhn (1983), is concise and easy to describe, but makes extensive use of free variables and so does not do full justice to the spirit of PFL. Kuhn gives another axiomatization dispensing with free variables, but that is harder to describe and that makes extensive use of defined functors.
In mathematics and logic, a higher-order logic (abbreviated HOL) is a form of logic that is distinguished from first-order logic by additional quantifiers and, sometimes, stronger semantics. Higher-order logics with their standard semantics are more expressive, but their model-theoretic properties are less well-behaved than those of first-order ...
For example, the quantifier ∀ A, which can be viewed as set-theoretic inclusion, satisfies all of the above except [symmetry]. Clearly [symmetry] holds for ∃ A while e.g. [contraposition] fails. A semantic interpretation of conditional quantifiers involves a relation between sets of subsets of a given structure—i.e. a relation between ...
Another is the Moggi–Hyland model of system F by an internal full subcategory of the effective topos of Martin Hyland. Term model constructions In many cases, the categorical semantics of a logic provide a basis for establishing a correspondence between theories in the logic and instances of an appropriate kind of category.
For example, there is a definition of primality using only bounded quantifiers: a number n is prime if and only if there are not two numbers strictly less than n whose product is n. There is no quantifier-free definition of primality in the language ,, +,, <, = , however. The fact that there is a bounded quantifier formula defining primality ...
of quantifiers for Q ∈ {∀,∃}. It is a special case of generalized quantifier. In classical logic, quantifier prefixes are linearly ordered such that the value of a variable y m bound by a quantifier Q m depends on the value of the variables y 1, ..., y m−1. bound by quantifiers Qy 1, ..., Qy m−1. preceding Q m. In a logic with (finite ...