Search results
Results from the WOW.Com Content Network
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, n th, etc.) aimed to extend enumeration to infinite sets. [ 1 ] A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used.
The set N of natural numbers is defined in this system as the smallest set containing 0 and closed under the successor function S defined by S(n) = n ∪ {n}. The structure N, 0, S is a model of the Peano axioms (Goldrei 1996). The existence of the set N is equivalent to the axiom of infinity in ZF set theory.
As every ordinal number is defined by a set of smaller ordinal numbers, the well-ordered set Ω of all ordinal numbers (if it exists) fits the definition and is itself an ordinal. On the other hand, no ordinal number can contain itself, so Ω cannot be an ordinal. Therefore, the set of all ordinal numbers cannot exist.
Every well-ordered set is order-equivalent to exactly one ordinal number, by definition. The ordinal numbers are taken to be the canonical representatives of their classes, and so the order type of a well-ordered set is usually identified with the corresponding ordinal. Order types thus often take the form of arithmetic expressions of ordinals.
Ordinal addition on the natural numbers is the same as standard addition. The first transfinite ordinal is ω, the set of all natural numbers, followed by ω + 1, ω + 2, etc. The ordinal ω + ω is obtained by two copies of the natural numbers ordered in the usual fashion and the second copy completely to the right of the first.
In this viewpoint, the universe of set theory is built up in stages, with one stage for each ordinal number. At stage 0, there are no sets yet. At stage 0, there are no sets yet. At each following stage, a set is added to the universe if all of its elements have been added at previous stages.
When considered as a set, the elements of are the countable ordinals (including finite ordinals), [1] of which there are uncountably many. Like any ordinal number (in von Neumann's approach), is a well-ordered set, with set membership serving as the order relation.
Within set theory, many collections of sets turn out to be proper classes. Examples include the class of all sets (the universal class), the class of all ordinal numbers, and the class of all cardinal numbers. One way to prove that a class is proper is to place it in bijection with the class of all ordinal numbers