Search results
Results from the WOW.Com Content Network
Reversing the digits to modern-day usage of descending order of decimal places, we get 314159265358979324 which is the value of pi (π) to 17 decimal places, except the last digit might be rounded off to 4. This verse encrypts the value of pi (π) up to 31 decimal places.
Any such symbol can be called a decimal mark, decimal marker, or decimal sign. Symbol-specific names are also used; decimal point and decimal comma refer to a dot (either baseline or middle ) and comma respectively, when it is used as a decimal separator; these are the usual terms used in English, [ 1 ] [ 2 ] [ 3 ] with the aforementioned ...
He was also the first to specify sine and versine (1 − cos x) tables, in 3.75° intervals from 0° to 90°, to an accuracy of 4 decimal places. In fact, the modern terms "sine" and "cosine" are mistranscriptions of the words jya and kojya as introduced by Aryabhata.
Approximating a fraction by a fractional decimal number: 5 / 3 1.6667: 4 decimal places: Approximating a fractional decimal number by one with fewer digits 2.1784: 2.18 2 decimal places Approximating a decimal integer by an integer with more trailing zeros 23217: 23200: 3 significant figures Approximating a large decimal integer using ...
Madhava's sine table is the table of trigonometric sines constructed by the 14th century Kerala mathematician-astronomer Madhava of Sangamagrama (c. 1340 – c. 1425). The table lists the jya-s or Rsines of the twenty-four angles from 3.75 ° to 90° in steps of 3.75° (1/24 of a right angle , 90°).
In a vigesimal place system, twenty individual numerals (or digit symbols) are used, ten more than in the decimal system. One modern method of finding the extra needed symbols is to write ten as the letter A, or A 20, where the 20 means base 20, to write nineteen as J 20, and the numbers between with the corresponding letters of the alphabet.
The differential equation is said to be in Sturm–Liouville form or self-adjoint form.All second-order linear homogenous ordinary differential equations can be recast in the form on the left-hand side of by multiplying both sides of the equation by an appropriate integrating factor (although the same is not true of second-order partial differential equations, or if y is a vector).